• Microfluidics News Admin

[Biosensors and Bioelectronics] Detection of Ca2+-induced acetylcholine released from leukemic T-cel


A microfluidic structured-dual electrodes sensor comprising of a pair of screen printed carbon electrodes was fabricated to detect acetylcholine, where one of them was used for an enzyme reaction and another for a detection electrode. The former was coated with gold nanoparticles and the latter with a porous gold layer, followed by electropolymerization of 2, 2:5,2-terthiophene-3-(p-benzoic acid) (pTTBA) on both the electrodes. Then, acetylcholinesterase was covalently attached onto the reaction electrode, and hydrazine and choline oxidase were co-immobilized on the detection electrode. The layers of both modified electrodes were characterized employing voltammetry, field emission scanning electron microscopy, X-ray photoelectron spectroscopy, and quartz crystal microscopy. After the modifications of both electrode surfaces, they were precisely faced each other to form a microfluidic channel structure, where H2O2 produced from the sequential enzymatic reactions was reduced by hydrazine to obtain the analytical signal which was analyzed by the detection electrode. The microfluidic sensor at the optimized experimental conditions exhibited a wide dynamic range from 0.7 nM to 1500 μM with the detection limit of 0.6 ± 0.1 nM based on 3 s (S/N = 3). The biomedical application of the proposed sensor was evaluated by detecting acetylcholine in human plasma samples. Moreover, the Ca2+-induced acetylcholine released in leukemic T-cells was also investigated to show the in vitro detection ability of the designed microfluidic sensor. Interference due to the real component matrix were also studied and long term stability of the designed sensor was evaluated. The analytical performance of the designed sensor was also compared with commercially available ACh detection kit.

Mahmood H.Akhtar, Khalil K.Hussain, N.G.Gurudatt, Yoon-BoShim. Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan 46241, South Korea Received 2 May 2017, Revised 16 June 2017, Accepted 4 July 2017, Available online 5 July 2017. crossmark-logo Show less https://doi.org/10.1016/j.bios.2017.07.003

Link: http://www.sciencedirect.com/science/article/pii/S0956566317304542?via%3Dihub

#07152017 #biosensor #detection #MEMS #electrode

Recent Posts

See All

© 2017 by "Microfluidics News".