• Microfluidics News Admin

[BMC Biology] Cell fixation and preservation for droplet-based single-cell transcriptomics


Abstract:

Background

Recent developments in droplet-based microfluidics allow the transcriptional profiling of thousands of individual cells in a quantitative, highly parallel and cost-effective way. A critical, often limiting step is the preparation of cells in an unperturbed state, not altered by stress or ageing. Other challenges are rare cells that need to be collected over several days or samples prepared at different times or locations.

Methods

Here, we used chemical fixation to address these problems. Methanol fixation allowed us to stabilise and preserve dissociated cells for weeks without compromising single-cell RNA sequencing data.

Results

By using mixtures of fixed, cultured human and mouse cells, we first showed that individual transcriptomes could be confidently assigned to one of the two species. Single-cell gene expression from live and fixed samples correlated well with bulk mRNA-seq data. We then applied methanol fixation to transcriptionally profile primary cells from dissociated, complex tissues. Low RNA content cells from Drosophila embryos, as well as mouse hindbrain and cerebellum cells prepared by fluorescence-activated cell sorting, were successfully analysed after fixation, storage and single-cell droplet RNA-seq. We were able to identify diverse cell populations, including neuronal subtypes. As an additional resource, we provide 'dropbead', an R package for exploratory data analysis, visualization and filtering of Drop-seq data.

Conclusions

We expect that the availability of a simple cell fixation method will open up many new opportunities in diverse biological contexts to analyse transcriptional dynamics at single-cell resolution.

Jonathan Alles†, Nikos Karaiskos†, Samantha D. Praktiknjo†, Stefanie Grosswendt, Philipp Wahle, Pierre-Louis Ruffault, Salah Ayoub, Luisa Schreyer, Anastasiya Boltengagen, Carmen Birchmeier, Robert Zinzen, Christine KocksEmail authorView ORCID ID profile and Nikolaus RajewskyEmail author †Contributed equally BMC Biology201715:44 DOI: 10.1186/s12915-017-0383-5© Kocks et al. 2017 Received: 26 April 2017Accepted: 3 May 2017Published: 19 May 2017

Link: https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-017-0383-5

#05232017 #dropbasedmicrofluidics #singlecell

Recent Posts

See All

© 2017 by "Microfluidics News".