• Microfluidics News Admin

[Lab on a chip] Directly embroidered microtubes for fluid transport in wearable applications


We demonstrate, for the first time, a facile and low-cost approach for integrating highly flexible and stretchable microfluidic channels into textile-based substrates. The integration of the microfluidics is accomplished by means of directly embroidering surface-functionalized micro-tubing in a zigzag/meander pattern and subsequently coating it with an elastomer for irreversible bonding. We show the utility of the embroidered micro-tubing by developing robust and stretchable drug-delivery and electronic devices. Controlled drug-delivery platforms with sustained release are achieved through selected laser ablated openings. We further demonstrate a wearable wireless resonant displacement sensor capable of detecting strains ranging from 0 to 60% with an average sensitivity of 45 kHz per % strain by filling the embroidered tubing with a liquid metal alloy, creating stretchable conductive microfluidics with <0.4 Ω resistance variations at their maximum stretchability (100%). The interconnects can withstand 1500 repeated stretch-and-release cycles at 30% strain with a less than 0.1 Ω change in resistance.

Rahim Rahimi,ab Wuyang Yu,ab Manuel Ochoaab and Babak Ziaie*ab Author affiliations * Corresponding authors a School of Electrical and Computer Engineering, Purdue University, West Lafayette, USA E-mail: bziaie@purdue.edu Tel: +1 765 494 0725 b Birck Nanotechnology Center, Purdue University, West Lafayette, USA

Link: http://pubs.rsc.org/en/content/articlelanding/2017/lc/c7lc00074j#!divAbstract

#04062017 #microtube #wearable #stretchable #drugdelivery

8 views0 comments

Recent Posts

See All

© 2017 by "Microfluidics News".