• Microfluidics News Admin

[Sensors and Actuators A: Physical] Numerical and experimental analysis of an acoustic micropump uti


We present the design of a microfluidic pumping device based on the effect of boundary layer driven acoustic streaming. One wall of the channel is made from a flexible material and hosts a flexural travelling wave, which induces a directed flow of the fluid inside the channel. A flexible printed circuit board was chosen as the oscillating wall, which makes the manufacturing process easy and could potentially enable the fabrication of low-cost disposable devices for the use in e.g. biomedical applications. Numerical studies based on an approach utilizing perturbation theory were conducted, where a comparison with the result of a time-dependent simulation of the full Navier-Stokes equations is provided. Based on the numerical analysis, a quadratic dependency of the flow velocity on the deflection amplitude of the membrane was identified. A ring-shaped membrane and channel was considered to be most practical for the experimental setup, where the idea and design process will be discussed. The flow velocity was measured using particle tracking velocimetry and the results show the same quadratic dependency of the flow velocity, which is in agreement with the theory.

Marcus A. Hintermüller, , Bernhard Jakoby, Erwin K. Reichel Institute for Microelectronics and Microsensors, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria Received 16 December 2016, Revised 17 March 2017, Accepted 23 March 2017, Available online 27 March 2017 Show less http://dx.doi.org/10.1016/j.sna.2017.03.029

Link: http://www.sciencedirect.com/science/article/pii/S0924424717304958

#04012017 #sensor #micropump #acoustic #actuator #MEMS #labonachip

5 views0 comments

Recent Posts

See All

© 2017 by "Microfluidics News".